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Abstract Many threatened fish species that utilize riv-
erine habitats are faced with habitat degradation and
subsequent deterioration in their ecological surround-
ings. Habitat degradation is a consequence of water
quality parameters associated with anthropogenic activ-
ities including mining, industrial, agricultural and urban
activities. We examined how the movement behaviour
of radio-tracked Orange-Vaal largemouth yellowfish
(Labeobarbus kimberleyensis) responded to a suite of
water quality chemical parameters and habitat features
in the Vaal River, South Africa. We found that the
probability of their movement increased with a decrease
in water clarity, presence of emergent and overhanging
marginal vegetation and fast flowing rapids. High mo-
bility in conditions of low water clarity was probably
related to low prey capture success of this piscivorous
fish. High movement of largemouth yellowfish in emer-
gent and overhanging marginal vegetation areas and
rapid habitat biotopes were attributed to accessibility
of prey within these important cover features. When
water quality parameters were considered, the probabil-
ity of largemouth yellowfish movement increased with
increasing levels of dissolved chloride (Cl) and silicon
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(Si), whereas movement decreased with high phosphate
(PO4) concentrations and increased with alkalinity
levels in the river. High nutrient levels associated with
eutrophication caused reductions in the movement of
largemouth yellowfish. The association of increased
movement of largemouth yellowfish with increasing
Cl and Si is indicative of degraded habitat condition in
the Vaal River system. Our study showed the impor-
tance of monitoring fish behavioural movement patterns
to multiple environmental parameters, as these fish are
important ecological indicators when appropriate
conservation and management plans of freshwater
ecosystems are required.
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Introduction

An important factor of environmental monitoring is
determining how water quality, physical habitat and
other anthropogenic disturbances affect the behaviour
and physiology of organisms (Aparicio and Sostoa
1999; Harvey et al. 1999; Gilliam and Fraser 2001;
Harrison and Whitfield 2004). Fish are considered as
one of the best ecological indicators of freshwater eco-
system health as they exhibit distinct behavioural, phys-
iological and morphological responses to environmental
stressors (Cooke and Cowx 2004; Harrison and
Whitfield 2004, 2006; Elliott et al. 2007). Monitoring
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the movement patterns of aquatic organisms, such as
fish, can offer an intuitive understanding of their distri-
bution as well as tolerance to associated environmental
conditions (Fausch et al. 2002; Gowan and Fausch
2002; Albanese et al. 2004; Petty and Grossman 2004;
Gowan 2007; Roberts and Angermeier 2007). Thus, this
knowledge could improve our understanding of river
fish ecology amidst increasing anthropogenic impacts
worldwide (Gowan et al. 1994; Roberts and Angermeier
2007).

Locomotion of fish is a dynamic biological process
indicating the general health and physiological response
of fish (Schreck et al. 1997; Cooke et al. 2003). In fish
species, chronic exposure to multiple stressors reduces
swimming ability, growth and habitat condition which
may impair fish health and possibly result in mortality
(Bervoets and Blust 2003; Wepener et al. 2011). In
aquatic ecosystems the evaluation of excessive
movement of species beyond normal ranges is
challenging but studies have shown that it can be
determined using movement rate (Gerhardt 2007).
Excessive anthropogenic effects reduce fitness and
survival potential in many species (Brind'Amour
and Lobry 2009). Fish health is influenced by
poor water quality, accumulation of heavy metals/
toxicants and alteration in habitat structure from
polluted environments (Gerhardt 2007). The move-
ment responses of specialist species to environ-
mental pollutants can affect physiology, produce
physical abnormalities and lead to mortalities
(Gerhardt 2007; Brind'Amour and Lobry 2009).
The first response to excessively stressful environ-
ments may include avoidance of non-optimal con-
ditions, followed by physiological stress where
respiratory, metabolic or excretory rates may in-
crease (Dallas and Day 2004). Telemetry tech-
niques allow fish tracking in response to environ-
mental stressors (Lucas et al. 1993; Cooke et al.
2003; O’Brien et al. 2012a, 2013a, b). Considering
the importance of movement processes, studies have
linked movement of freshwater river fish to ecological
factors such as physical features, habitat structure and
chemical variables (Gowan et al. 1994; Gilliam and
Fraser 2001; Gerhardt 2007).

Multiple physico-chemical variables including water
clarity, depth, pH, salinity, conductivity, nutrients, or-
ganic enrichment, trace metals and other toxicants, flow
and habitat structure potentially influence the wellbeing
of aquatic ecosystems (Dallas and Day 2004; Villiers
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and Thiart 2007; Monette and McCormick 2008;
Wepener et al. 2011). In South Africa, a large proportion
of river basins (60%) have been exposed to habitat
destruction (Revenga et al. 2005), affecting their
primary functions and services including nutrient
recycling, waste purification and maintaining large
biodiversity (Palmer et al. 2005; Revenga et al.
2005). In particular, the Vaal River is located in
the main mining and industrial areas of South
Africa (Wepener et al. 2011). In the past, the water
quality in this river has decreased significantly due
to mixing of run-off waste such as salt load,
nutrients and agriculture pesticides from the met-
ropolitan area leading to mass mortality, particu-
larly of yellowfish species (Labeobarbus spp.)
which are habitat specialists in the Vaal River
system (McCarthy et al. 2007; Villiers and Thiart
2007; McCarthy and Pretorius 2009; Wepener
et al. 2011). The health of aquatic ecosystems
can be studied using biological indicators such as
socially and economically important apex preda-
tors, like the Orange-Vaal largemouth yellowfish
(Labeobarbus kimberleyensis) (hereafter referred
to as largemouth yellowfish), as they are sensitive to
environmental changes (O’Brien et al. 2011, 2013a, b).

The largemouth yellowfish is an endemic and a high
priority conservation species in South Africa region
(Impson et al. 2008). It is one of the largest cyprinid
fish in southern Africa. Moreover, the IUCN has cate-
gorized this species as “Near Threatened” (Impson and
Swartz 2007) primarily due to reduction in its habitats
and population size in its distribution range, and its
sensitivity to flow modifications and poor water quality
(Impson and Swartz 2007; Skelton and Bills 2007; De
Villiers and Ellender 2008; Impson et al. 2008; DWA
2010; Ellender et al. 2012). In particular, the rapid
biotope habitat (rapidly changing water flow) can also
change the movements of fish as they find inaccessible
habitats or find refuge from high current velocities
(Albanese et al. 2004; O’Brien et al. 2013a, b). Previous
studies have mainly focused on largemouth yellowfish
habitat utilization (O’Brien et al. 2011, 2013a, b) but
none on evaluating their movement response to water
quality and habitat change. To fill this knowledge gap,
we aimed to understand the movement behaviour of this
species according to a suite of water quality and habitat
features. We hypothesised that movement behaviour
largemouth yellowfish in the Vaal River, South Africa,
is influenced by a suite of water quality chemical
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parameters and habitat features, though in different
ways. Based on this we had the following predictions:

« that high yellowfish activity/movement occurs
where they are more likely to find prey species
within a range of habitats such as emergent and
overhanging marginal vegetation in the littoral zone
and bank of the river where they can presumably
meet their resource needs.

+ that yellowfish movement rates would increase as
water clarity declined as this may reduce the feeding
ability of piscivores such as yellowfish.

 that yellowfish movement rate may increase within
the rapid biotope which allow them to exploit pre-
viously inaccessible habitats or find refuge from
high current velocities.

+ that yellowfish will increase their movement to in-
creasing water conductivity while increased nutrient
loading can lead to elevated ammonia and nitrite
concentration which are toxic to many aquatic or-
ganisms and such nutrient enrichment can lead to a
rapid numerical increase in fast-growing plant, thus
reducing fish movement (Herbert and Steffensen
2005; Zhang et al. 2012).

Materials and methods
Study site

The Vaal River (upstream, 26°54'0.99”’S; 27°26'45.39"
E; downstream, 27°41'55.93"S; 26° 522.31"E, Fig. 1) is
one of Africa’s most important rivers providing water
supply to Gauteng Province, the economic heartland of
South Africa, supporting 42% of the urban population in
the region (Braun and Rogers 1987). The river rises on
the Drakensberg escarpment and flows ~900 km to the
confluences with the Orange River (Braun and Rogers
1987; Bertasso 2004, Fig. 1). In South Africa, the catch-
ments of the Vaal River spans approximately
192,000 km? and it is exposed to discharges from gold
and coal mines, industry and sewage-treatment plants
(DWA 2010; Wepener et al. 2011). Also, construction of
weirs, dams/ impoundments and small manmade lakes
has altered the natural water flow (Wepener et al. 2011).
Our study was done in a reach of the middle Vaal River,
southwest of Johannesburg (Fig. 1), on a 190 km section
from Parys to upstream of Bothaville (Fig. 1). The study
area is characterised by a sequence of moderately deep

<3 m mud and sand dominated pools with intermittent
shallow >1 m cobble, boulder and bedrock dominated
rapid habitats. The slight gradient of the reach ranges
between 0.2% to 0.6% which results in velocities be-
tween 0 and 1.5 m/s. The study area is under high
anthropogenic pressures which have local impacts on
water quality, habitat quality, and river flow (DWA
2010; Wepener et al. 2011; O'Brien et al. 2013a). For
the study area details, see O’Brien et al. (2013a, b). The
area receives summer rainfall and mean annual rainfall
of ~500 mm to 600 mm.

Study species

In this riverine system, the largemouth yellowfish is
considered an apex predator that reaches over 20 kg. It
primarily occurs in deep pools of large rivers and also in
slow-moving water upstream sections of weirs and
structures (De Villiers and Ellender 2007; Ellender
etal. 2012). This apex predator, initially feeds on insects
and small crustaceans as a juvenile, then when larger in
size it is a more carnivorous and opportunistic hunter
(O’Brien and De Villiers 2011).

Data collection

In total, 27 adult largemouth yellowfish were captured
using gill netting, fyke trapping and electrofishing (boat-
mounted electrofisher (1 kV) techniques (O’Brien et al.
2013a, b). Fishing effort for gill nets (93 mm mesh, 25 m
length nets) was two nights for 12 h, five 12 h night
efforts deployed in the evening and early morning for
large fyke net traps (22 mm mesh with two 35 m wings),
and purse dragged eight times for a large seine net
(22 mm mesh, 35 m length). Every fish was tagged with
radio transmitters (Weight 20 g; Advanced Telemetry
Systems Inc. (ATS), Isanti, MN, USA) resulting in a tag
burden of 2% of their body mass. Each captured
largemouth yellowfish was anaesthetised by placement
in a 50 L water filled container with either 2-phenoxy-
ethanol (0.4 mL/L) or clove oil (0.1 mL/L) added.
We attached transmitters dorso-laterally through
the musculature just below the dorsal fin using
stainless steel wire [see detailed tagging procedure
in O’Brien et al. (2013a, b)]. We injected an antibiotic
(Terramycin® containing oxy-tetracycline) (1 ml/kg)
and applied Betadine (Mundipharama, RSA) on
touched areas of the fish and wound-care gel (Aqua
Vet) on wounds to treat and minimize their risk of
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Fig. 1 Map of the survey regions showing the distributions of largemouth yellowfish Labeobarbus kimberleyensis (LKIM) on the Vaal

River, southern Africa

infections. The total body length, fork length, girth
length (mm) and body weight (g) were recorded from
each tagged yellowfish and it was placed in circulating
water within a 50 L water container until it recovered
completely. Immediately after recovery, fish were re-
leased back into the river at the place of capture. All
the capture and handling procedures of fish were follow-
ed using standard ethical guidelines of North West Uni-
versity, South Africa (O’Brien et al. 2012a, 2013a, b).
We monitored tagged individuals using various tech-
niques including foot walks along the banks of the Vaal
River, small inflatable boats, and by air in a fixed wing
aircraft (O’Brien et al. 2012a; 2013a, b; Fig. 2) from
July 2007 to August 2010. We used only behavioural
data collected after two weeks of release, although
tagged largemouth yellowfish were monitored immedi-
ately to make sure there was survival and recovery from
the tagging procedures (Bridger and Booth 2003;
Rogers and White 2007). We carried out random and
dedicated continuous 24-h surveys and the global posi-
tions of the tagged largemouth yellowfish (+ 1 m accu-
racy) were recorded using a detailed georeferenced map
of the site/hand-held global positioning system (GPS,
eTrex (Garmin, Kansas City, USA), or GeoExplorer®
3000 Trimble (Trimble Navigation Ltd., Sunnyvale,
CA, USA). Surveys were conducted for 3—4 days per
month in a specific section of the river to cover the entire
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study area for a year from the date of release. Individual
fish were identifiable based on their unique radio trans-
mitter signals visible on our computer/mobile system.
We measured the total maximum movement distance of
a tagged largemouth yellowfish during four consecutive
10-min intervals after locating the tagged fish. The
movement categories were described as low (<10 m/
10 min) and high movement (>10 m/10 min). We eval-
uated activity: (feeding/non feeding), fish habitat cover
(emergent and overhanging marginal vegetation, aquat-
ic vegetation, boulders/rocks (merged boulders/rocks)
and undercut banks (roots and dead/submerged trees),
biotope (backwater areas, pools, glides, and rapids (rif-
fles/runs), water column depth (mm) measured with a
depth stick, water clarity (m) measured with a clarity
tube, substrate types (silt, sand, gravel, cobble, boulder,
bedrock), water colour, water surface flow (no flow,
barely perceptible, riffle surface, smooth turbulent,
undular broken) and associated it with the movement
of yellowfish (Bovee 1986; Hirschowitz et al. 2007,
King et al. 2010; O’Brien et al. 2012b; 2013a, b). Water
flow (cumecs m>/s), dissolved salts (mg/1) (Ca, CI, K,
Mg, and SO,), dissolved nutrients (mg/l), (NO3, POy),
dissolved toxicant (mg/l) (F, NH4), pH, alkalinity (mg/
1), electrical conductivity (mS/m), and Si (mg/l) were
downloaded from the Department of Water and Sanita-
tion, South Africa Affairs for the respective study areas.
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Fig. 2 Identifying the position of tagged largemouth yellowfish
Labeobarbus kimberleyensis (a) by walking on the bank (b) and
drifting in a boat (c) on the Vaal River, southern Africa

Data analyses

The movement was categorized as 0 or 1 if the move-
ment was low (<10 m/10 min) or high (>10 m/10 min)
respectively. Factors associated with individual fish
movement were identified using Binomial Generalised
Linear Models (GLM) with mixed effects regression as
a function of covariates using the Ime4 package (Bates
et al. 2014) in R (R Development Core Team 2014).
Covariates and individual fish were used as fixed and
random effects in the model, respectively. Habitat fea-
tures and water quality were tested separately for their
respective influence on largemouth yellowfish move-
ment. To avoid issues with multicollinearity among
predictor variables, we removed the correlated variables
(r>0.60) in a hierarchical approach using Pearson cor-
relation co-efficient test (Graham 2003). First, we
performed correlation tests among variables within

habitat features, and water quality variables sepa-
rately then retained the least correlated habitat
features (activity, cover, biotope, depth, water clarity,
substrate and water surface flow) and water quality
variables (Cl, F, NH4, PO4, pH, alkalinity and Si) for
further statistical analysis.

The best-fit candidate models with few predictors
were selected based on the framework of Burnham
and Anderson (2002). Depth, water clarity, Cl, alkalinity
and Si were log transformed (log;) prior to regression,
allowing model coefficients to be interpreted as the
change in the log-odds ratio (Cooch and White 2005).
Model fit was assessed by examining Akaike’s informa-
tion criterion, standardized residuals, and observed vs.
predicted values (Burnham and Anderson 1998). Sig-
nificance of the individual regression coefficients was
evaluated at oc=0.05 level. Models were chosen based
on p-values (significant when p < 0.05) of covariates, by
examining plots of residuals and using Akaike’s infor-
mation criterion (AIC) to compare candidate models.
The best model (the model with the minimum AIC
value) was used as relative measure of model rank;
models with delta AIC values less than 2 suggest sub-
stantial evidence for the model (Burnham and Anderson
2002). All candidate models ranking less than 2 delta
AIC were used as a guide to select the best-fit models
explaining movement of largemouth yellowfish
(Burnham and Anderson 2002). Estimates of the relative
importance of predictor variables were made by
summing the Akaike weights (wi) across all the
models in which the variable occurred (Burnham
and Anderson 2002). We evaluated the direction
and effect of variables based on the average esti-
mates of the parameter coefficient and its precision
across the entire set of models (Burnham and
Anderson 2002). All statistical analyses were done
in Programme R version 3.0 (R Development Core
Team 2014) using other supporting packages MASS
(Venables and Ripley 2002), rJava (Urbanek 2010),
glmulti (Calcagno and de Mazancourt 2010) and
MuMIn (Barton 2013).

Results

Out of 27 largemouth yellowfish fitted with transmitters,
we successfully tracked 12 individuals. The adult indi-
vidual’s mean morphometric data were as follows: mean
body mass 3616+220 g, mean total length 678 +
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14 mm, mean fork length 616 + 12 mm and mean girth
370 =8 mm. The 12 tracked adult individuals resulted in
538 observations.

When we related the movement of 12 individuals to
habitat features, the two best models were identified
based on <2 delta AIC (Table 1). The relative variable
importance across all the models were water clarity
(wi=1), feeding (wi= 1), habitat cover (wi=0.96) and
biotope (wi=0.35) as main predictor variables for
yellowfish movement, while the contribution of other
variables was less (wi =<0.01). The coefficient estimate
of the top two models was almost consistent and sug-
gests that movement increased with decreasing water
clarity (6=-13.04 +2.79, p <0.005), presence of feed-
ing event (6=6.01+0.78, p<0.005), emergent and
overhanging marginal vegetation cover (3=3.81+
1.30, p=0.003) and rapid biotope (=4.13+2.65,
p=0.120). The movement reduced at water column
but not significantly (8=-2.33+1.36, p=0.087)
among all habitat covers. Overall GLM mixed model
coefficients showed a significant relationship between
probability of largemouth yellowfish movement with
water clarity, habitat cover and feeding event (Fig. 3).

The relationship between largemouth yellowfish
movement and water quality was explored separately
to evaluate the specific contribution of each variable.
Two best candidate models were identified for probabil-
ity of largemouth yellowfish movement based on the
model with low AICc (<2 delta AIC). Chloride (Cl) and
PO, representing salt and nutrient variables were iden-
tified as two important predictors of movement across

the two competing models (Table 1). However, other
important variables such as Si and alkalinity were also
found to influence probability of high movement across
the top models. Movement increased with increasing
levels of Cl (6=57.44+7.17, p<0.005) and Si (8=
3.61£0.47, p<0.005) whereas movement decreased
with high PO, levels (3=-35.83+7.58, p<0.005)
and increased with alkalinity levels (3=-20.19+
13.81, p= 0.144). The relative variable contribution
across all models for Cl, PO, nutrient and Si as predictor
variables was higher (wi= 1.0 for each) than alkalinity
(wi=0.41) and F toxicant (wi=0.32), whereas the con-
tribution of other variables was minor (wi=< 0.06).
GLM coefficients showed a significant relationship be-
tween probability of largemouth yellowfish movement
with CI, PO, nutrient, and Si (Fig. 4).

Discussion

Globally fish species living in freshwater habitats are
among the most endangered taxa on Earth (Collen et al.
2014). We found that largemouth yellowfish move-
ments increased significantly with decrease in water
clarity, presence of emergent and overhanging marginal
vegetation, rapid biotope and presence of feeding
events. When water quality was considered, largemouth
yellowfish movement increased with increasing levels
of CI and Si whereas their movement decreased with
high PO, nutrient load and increased with alkalinity
levels in the river. In particular riverine fish species

Table 1 The top generalised linear mixed effect multi models showing the effect of habitat features and water quality variables on
movement response of large mouth yellowfish Labeobarbus kimberleyensis

Environmental stressors Selected models df logLik  AICc  delta AIC Weight

Habitat features Water clarity + Feeding + Available habitat 8 —112.09 24045 0.00 0.61
Biotope+ Water clarity + Feeding + Available habitat 11 —109.52 241.55 1.09 0.35
Water clarity + Feeding 4 11957 24722 6.76 0.02
Water clarity + Depth + Feeding 5 —11947 249.05 8.60 0.01
Water clarity + Depth + Feeding + Substrate 6 —119.04 25023 9.77 0.00

Water quality (chemical variables) Cl+ PO, + Si 5 —195.1 400.32 0.00 0.39
Cl+ POy + Si+ Alkalinity 6 —19434 400.84 0.52 0.30
Cl+F+PO,+Si 6 —195.08 40232 2.00 0.14
Cl+F + PO, + Si + Alkalinity 7 —19429 402.79 247 0.11
Cl+F+pH+PO4+Si 7  —19487 40396 3.064 0.06

df, residual degrees of freedom; logLik, Log likelihood; AIC, Delta Akaike Information Criterion; Delta AIC, the difference in AIC values
between each model and the model with the lowest AIC; PO4, Dissolved Phosphorus; Cl, Chloride; Si, Silicon; F, Fluoride
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Fig. 3 Generalised linear mixed effect model (+ 95% confidence
intervals) explaining the predicted relationships between move-
ment of large mouth yellowfish Labeobarbus kimberleyensis and

faced with critical habitat degradation by a variety of
anthropogenic disturbances, such as dam and weir con-
struction and accumulation of heavy metals, nutrients,
other chemicals from industries and urban waste, and
runoff of pesticide use in the nearby agricultural land
(Rahel et al. 1996; Bervoets and Blust 2003; Nilsson
et al. 2005; Habit et al. 2007; Wepener et al. 2011;
Cooke et al. 2012). The threatened riverine fish species
such as largemouth yellowfish are more vulnerable to
these impacts because of its sensitivity to degraded
water quality (Impson and Swartz 2007). These detri-
mental effects affect fish metabolic activity, resistance to
diseases, reproductive potential, and ultimately the
health and survival of individual/population (Chapman
1996; Barton 2002).

Water clarity is one of the indicators of habitat con-
dition of freshwater ecosystems (Geisler et al. 2016).
Variations in water clarity influence surface temperature,
heat budgets and stable environment in the freshwater

covariates (water clarity (a), occurrence of feeding event (b),
available major habitat (¢) and biotope (d) from the best models
(L2AAIC)

system (Mazumder and Taylor 1994; Fee et al. 1996).
The amount of light passing through the water column is
needed for photosynthesis (Walmsley and Bruwer 1980;
Dallas and Day 2004). Furthermore, poor land use prac-
tices around Vaal River causes soil erosion that leads to
elevated turbidity (Mulder 1973). Consequently, turbid
environments affect primary production (Maitland
1995), zooplankton production (Walmsley and Bruwer
1980), and subsequently reduces the food availability
and oxygen levels for fish (Kirk and Akhurst 1984;
Newcombe and MacDonald 1991). Many fish species
use visual cues to select feeding sites, capture prey and
escape from potential threats (Aksnes and Utne 1997
Vogel and Beauchamp 1999; Figueiredo et al. 2015).
The largemouth yellowfish as a visual predator, relies on
water visibility while feeding. Particularly, such
turbid environment significantly decreases feeding
success rates of piscivorous fish, which feed on
more visible prey (Mulder 1973; De Robertis et al.
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Fig. 4 Generalised linear mixed effect model (+ 95% confidence
intervals) explaining the predicted relationships between move-
ment of largemouth yellowfish Labeobarbus kimberleyensis and

2003; Figueiredo et al. 2015). Generally, low prey
capture success rate increases the high mobility in
fish (Gregory and Levings 1996; De Robertis et al.
2003). Therefore, the reduced feeding efficiency might
have enhanced the high movement in largemouth
yellowfish, and this may have an impact on the physi-
ology of the species (Dallas and Day 2004).

We found that largemouth yellowfish movement was
higher in vegetated areas. This could be due to higher
availability of habitats which favours environmental
quality (Gregg and Rose 1985; Schultz and Dibble
2012), emergent and overhanging marginal vegetation
provides cover reducing mammal and bird predation
(Uieda and Motta 2007) and can help yellowfish by
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avoiding exposure to sunlight, wind action, temperature
variation and water flow in the freshwater system (Boss
and Richardson 2002). Our study revealed high move-
ment of largemouth yellowfish in emergent and over-
hanging marginal vegetation in the littoral zones and on
the river bank probably because structural habitat com-
plexity influences prey abundance and diversity
(O'Brien et al. 2013a) and therefore, enforcing fish
activity.

Our study found that largemouth yellowfish showed
high movements when associated with the rapid bio-
tope. This species prefers fast-flowing waters with
sandy or rocky substrate (Mulder 1973; Skelton and
Bills 2007) and shows strong behavioural response
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patterns to disrupted/sudden changes in flow (O'Brien
et al. 2013a). These responses possibly involved the
coordinated high movement of individuals into suitable
refuge areas to avoid rapidly changing water levels/
water flow and sudden surface-associated temperature
changes (O'Brien et al. 2013a). Size-selective predators
such as otter Aonyx spp. and predatory birds preferen-
tially consume larger fish (Matthews 1998) and an in-
creased predation risk in fast flowing shallower areas of
a river might account for the high movements of large
size-classes of largemouth yellowfish.

In our study, we found low movement of largemouth
yellowfish in response to high dissolved phosphorus
nutrient. This was probably due to high nutrient load
in the Vaal River (De Villiers and Thiart 2007; Wepener
et al. 2011). Although nutrients such as dissolved phos-
phorus (P) and nitrogen (N) are important components
for healthy aquatic ecosystems, they are of most concern
because they can stimulate/limit the growth of algae and
aquatic weeds that can lead to eutrophication (Graham
and Wilcox 2000; Anderson et al. 2002; Nhapi and
Tirivarombo 2004; Peretyatko et al. 2007; Villiers
and Thiart 2007; Wepener et al. 2011; Akbarimehr
et al. 2016). Consequently, the water quality can
be further reduced when bacteria consume dead
algae and use available dissolved oxygen and ele-
vate ammonium levels, which hamper aquatic life
(Hellawell 1986). Such environmental changes af-
fect pH and temperature (Nhapi and Tirivarombo
2004). Therefore, hypoxic conditions reduce fish
metabolic rate and movement in order to minimize
energy expenditures (Schurmann and Steffensen 1994;
Dallas and Day 2004; Herbert and Steffensen 2005;
Zhang et al. 2009).

Elevated levels of dissolved CI observed in the Vaal
River during this study that exceeded the Target Water
Quality Guideline levels of aquatic ecosystems in South
Africa (DWAF 1996), increased the probability of
largemouth yellowfish movement in the Vaal River
during our study. Water salinity is an important natural
stressor affecting aquatic communities in the freshwater
ecosystem (Gutiérrez-Canovas et al. 2009; Vidal-
Abarca et al. 2013; Schriever et al. 2015). Dissolved
Chloride (Cl) is one of the major ions found in most
natural waters and its levels increase due to weathering
of rocks, industrial and sewage effluents, and the use of
chlorination processes for drinking where runoff occurs
into rivers (Wannamaker and Rice 2000). Thus, these
polluted aquatic systems can stimulate high movement

of largemouth yellowfish. Similarly, we also found
significant increase in fish movement in response
to increased levels of Si. Although, Si is removed
from water naturally through reverse weathering
process such as plankton fixation and sediment
settling of dissolved silicon with clay minerals
(Tallberg 2000), high concentrations of Si can also
significantly influence and limit phytoplankton
communities under eutrophication (Tallberg 2000;
Conley et al. 1993). Alkalinity was not a significant
predictor determining the largemouth yellowfish move-
ment in the Vaal River.

Conservation implications

Largemouth yellowfish can serve as an appropriate in-
dicator of the effect of these environmental variable
changes as they exhibited complex behavioural re-
sponses to environmental changes in mainstream river-
ine habitats. The major threats to largemouth yellowfish
in the Vaal River are associated with industrial/mining
effluents, agricultural return flow, unfiltered effluent
from municipal waste water treatment plants and solid
waste in the storm water return flow (Impson et al. 2008)
hampering the water quality (Wepener et al. 2011). Our
study indicated that water clarity, emergent and over-
hanging marginal vegetation, rapid biotope, nutrient
load and salinity clearly have a pervasive influence on
fish movement, facilitating efforts to predict how fishes
respond to environmental change. Influence of such
factors could affect persistence and colonisation rates
of such sensitive fish species in the long-term. Based on
this, movement behaviour of this species could be im-
portant for management and conservation actions in this
riverine system. The relationship between ecological
factors and fish movement can be considered of rele-
vance for future experimental and field research. These
components are crucial for subsequent water quality
monitoring and predicting changes in fish populations
as a direct result of anthropogenic disturbances (Merciai
etal. 2014). Consequence of pollutants discharged in the
aquatic environment is likely to accumulate and cause
potential risk not only to the fish species but also to
piscivorous bird and mammal species including
humans. Hence, it is essential to minimise the major
sources of phosphorus from runoff from agricultural
fertilizers, manure, and organic sewage wastes and in-
dustrial effluent into a river (Mallin et al. 1993;
Anderson et al. 2002; Nhapi and Tirivarombo 2004).
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Further studies should focus on the relationship between
largemouth yellowfish feeding and their migratory
behaviour in relation to dam and weir construction,
characterise and evaluate spawning habitats and
conditions, drought/flood refuge and emergent and
overhanging marginal/aquatic vegetation, seasonal
movements w.r.t different life histories of the study
species, may have important implications for colo-
nization and persistence of river fish populations
(Matthews 1998; Albanese et al. 2004). Therefore,
our study indicated freshwater fish species like the
largemouth yellowfish can act as sensitive ecolog-
ical indicators and illustrate some of the present
habitat degradation pressures on freshwater ecosys-
tems needing urgent attention.
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